531

Tautomeric Behavior of 3-(Arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines Between the Hydrazone Imine and Diazenyl Enamine Forms in Acidic Media. Solvent and Substituent Effects Yoshihisa Kurasawa*, Tomoyoshi Hosaka and Atsushi Takada

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Ho Sik Kim

Department of Chemistry, Hyosung Women's University, Gyongsan 713-702, Korea

Yoshihisa Okamoto

Division of Chemistry, College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228, Japan Received July 29,1994

The 3-(arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines 1a-h and 2a-e showed tautomeric equilibria between the hydrazone imine A and diazenyl enamine B forms in a series of mixed trifluoroacetic acid/dimethyl sulfoxide media. The substituent and solvent effects on the tautomer ratios of A to B in a series of mixed media were studied for compounds 1a-h and 2a-e by the nmr spectroscopy. In compounds 1a-h and 2a-e, the ratios of the tautomer B gradually increased with elevation of acid concentration, and the tautomer B exclusively existed in trifluoroacetic acid media. The various acid concentrations (C v/v%, C' mol/l) giving the 1:1 tautomer ratios [C(A:B = 1:1), C'(A:B = 1:1)] were obtained from all compounds (Figures 1-13), and the linear correlation of the Hammett σ_p values with the log C'(A:B = 1:1) values were observed for compounds 1a-h. The larger Hammett σ_p values brought about the larger acid concentrations C(A:B = 1:1) in compounds 1a-h and 2a-e, indicating that the higher acid concentration was required for the stabilization of tautomer B possessing the electron-withdrawing p-substituents R¹, which weakened the basicity of the azo nitrogen atom. Moreover, the ester group R² of compounds 2a-e was found to decrease the electron density of the azo nitrogen atom, since the acid concentration C(A:B = 1:1) of compound 2c (R¹ = H, R² = COOMe, $\sigma_p = 0$) was 52%, whose value was larger than that of compound 1b (R¹ = CN, R² = H, $\sigma_p = 0.66$) [C(A:B = 1:1) = 42%].

J. Heterocyclic Chem., 32, 531 (1995).

In previous papers [1,2], we reported the synthesis of the 3-(arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines 1a-h and 2a-e (Chart 1), whose nmr spectra in dimethyl sulfoxide showed tautomeric equilibria between the hydrazone imine A and diazenyl enamine B forms (Schemes 1 and 2). Moreover, the linear correlation of the Hammett σ_p values with the tautomeric equilibrium constants K_T was found in compounds 1a-h, although such a correlation was not observed in compounds 2a-e. On the

Chart 1 Chart 2

$$R^2$$
 R^3

1a-h $R^2 = H$
2a-e $R^2 = COOMe$

3a $X = CH, R^1 = H, R^2 = COOEt$
3b $X = CH, R^1 = H, R^2 = COOEt$
3c $X = N, R^1 = H, R^2 = COOEt$
3d $X = N, R^1 = H, R^2 = COOEt$
3d $X = N, R^1 = Me, R^2 = CN$

other hand, we have already reported that the tautomer ratios of **A** to **B** in compounds **3a-d** (Chart 2) change in a series of mixed trifluoroacetic acid/dimethyl sulfoxide media [3]. In the present investigation, we studied the solvent and substituent effects on the tautomer ratios of **A** to **B**, which were derived from the nmr spectral data of compounds **1a-h** and **2a-e** in a series of mixed trifluoroacetic acid/dimethyl sulfoxide media. As the result, it was found that the various acid concentrations (C v/v%, C' mol/l) giving a 1:1 tautomer ratio [C(A:B = 1:1), C'(A:B = 1:1)] were obtained in all compounds **1a-h** and **2a-e**, and the linear correlation of the Hammett σ_p values with the log C'(A:B = 1:1) values was observed in compounds **1a-h**. This paper describes the nmr spectral data and fluctuation

tendency for the tautomer ratios of **A** to **B** together with the correlation of the Hammett σ_p values with the log C'(A:B = 1:1) values.

The nmr spectral data and tautomer ratios of compounds 1a-h and 2a-e in dimethyl sulfoxide have already been described in previous papers [1,2] and also listed in this paper (Tables 1 and 2). The assignment of the hydrazone NH proton signals in compounds $1 (R^1 = Me)$ and 2 = Me

(R^1 = Me) was established by the C-H coupling data [1], and hence the hydrazone CH (A form), diazenyl CH (B form), N₄-H (B form) and C₅-H (A, B forms) proton signals were easily distinguishable from the other signals. In this study, the nmr spectra of compounds 1a-h and 2a-e were measured in a series of mixed trifluoroacetic acid/dimethyl sulfoxide media in order to clarify the fluctuation tendency for the tautomer ratios of A to B. The

Table 1
The NMR Spectral Data for Compounds 1a-h

							C	hemical Shift (δ		
				TFA %	Tauton	ner Ratio	Hydrazone CH	Diazenyl CH		-H
Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	in DMSO	A	В	A Form	B Form	A Form	B Form
1a	NO_2	Н	Н	0	30	70	7.86	8.49	8.10	7.82
	2			25	50	50	7.85	8.42	7.77	7.89
				50	59	41	7.77	8.29	7.69	[a]
				75	26	74	7.80	8.06	[a]	7.66
				100	0	100		8.34		7.87
1b	CN	Н	Н	0	40	60	7.81	8.41	8.10	7.79
				25	50	50 .	7.78	8.35	7.81	7.89
				40	51	49	7.76	8.29	7.75	7.86
				50	38	62	7.70	8.20	7.64	7.85
				75	0	100		7.98		7.57
				100	0	100		8.24		7.79
1e	SO_2NH_2	H	H	0	44	56	7.78	8.41	8.08	7.79
	2 2			25	50	50	7.74	8.32	[a]	[a]
				35	50	50	7.72	8.27	[a]	7.85
				50	48	52	7.81	8.17	[a]	[a]
				75	33	67	7.82	7.99	[a]	[a]
				100	0	100		8.32		7.87
1d	COOEt	Н	Н	0	46	54	7.79	8.44	8.04	7.81
				15	47	53	7.78	8.38	7.92	7.82
				25	50	50	7.76	8.32	[a]	[a]
				50	31	69	7.70	8.21	7.66	7.82
				75	12	88	7.81	7.99	[a]	7.61
				100	0	100		8.08		7.62
1e	Cl	Н	Н	0	54	46	7.72	8.33	8.06	7.77
				10	51	49	7.73	8.28	7.86	7.98
				20	44	56	7.71	8.22	7.86	7.89
				25	32	68	7.68	8.19	[a]	[a]
				50	0	100		8.08		7.81
				75	Ö	100		7.95		[a]
				100	0	100		8.03		7.60
1f	F	Н	Н	0	60	40	7.68	8.31	8.04	7.75
	•	••	••	10	49	51	7.69	8.24	7.88	7.97
				25	30	70	7.66	8.16	7.83	7.88
				50	0	100	**	8.07		7.80
				75	0	100		7.88		7.52
				100	0	100		8.00		7.57
1g	Н	Н	Н	0	62	38	7.70	8.33	8.02	7.76
- 6		11	**	5	53	47	7.71	8.29	7.87	7.97
				25	29	71	7.66	8.18	7.80	7.89
				50	11	89	7.59	8.10	7.61	7.82
				75	0	100		7.87		7.52
				100	0	100		7.94		7.52
1h	Et	Н	Н	0	67	33	7.68	8.33	7.99	7.77
111	Et	11	11	5	50	50	7.68	8.23	7.88	7.77
				25	0	100	7.06	8.12	7.00	7.87
				50	0	100		8.06		7.81
				75	0	100		7.84		7.49
				100	0	100	 	7.89		7.49
				100	U	100		7.09		7.40

Table 2
The NMR Spectral Data for Compounds 2a-e

				TFA%	Tautom	er Ratio	C ₅ -H		Chemical Shift (δ ppm COOMe) N ₁ -Me	
Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	in DMSO	A	В		B Form	A Form	B Form	A Form	B Form
2a	NO_2	COOMe	Н	0	100	0	7.89		3.77			
	2			25	93	7	7.79	[a]	3.69	3.71		
				50	87	13	7.68	[a]	3.60	3.58		
				75	79	21	7.72	7.64	3.55	3.57		
				100	0	100		7.88		3.90		
2b	NO_2	COOMe	Me	0	100	0	7.96		3.78		3.70	
	-			25	89	11	7.86	7.80	3.69	3.71	3.61	3.59
				50	88	12	7.72	[a]	3.60	3.57	3.48	3.50
				75	79	21	7.76	7.66	3.57	3.66	3.54	3.48
				100	0	100		7.93		3.83		3.83
2c	H	COOMe	Me	0	100	0	7.92		3.71		3.66	
				25	100	0	7.84		3.66		3.59	
				50	71	29	7.67	[a]	3.58	3.55	3.43	3.48
				75	0	100		7.70		3.58		3.55
				100	0	100		7.75		3.90		3.79
2d	Me	COOMe	Н	0	100	0	7.88		3.73			
				25	100	0	7.77		3.65			
				50	85	15	7.65	[a]	3.58	3.47		
				75	0	100		7.64		3.62		
				100	0	100		7.60		3.90		
2e	Me	COOMe	Me	0	100	0	7.94		3.72		3.67	
				25	100	0	7.82		3.64		3.57	
				50	78	22	7.70	[a]	3.58	3.56	3.48	3.50
				75	0	100		7.67		3.60		3.54
				100	0	100		7.71		3.91		3.77

[[]a] Overlapped with other signals.

Table 3

Data of the Hammett σ_p , C(A:B=1:1), C'(A:B=1:1) and log C'(A:B=1:1) Values for Compounds 1 and 2

Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	σ _p [a]	C(A:B = 1:1) (v/v %)	C'(A:B = 1:1) (mol/l)	log C'(A:B = 1:1)
1a	NO_2	Н	Н	+0.78 (p-NO ₂)	57	7.70	0.89
1b	CN	H	H	+0.66 (p-CN)	42	5.67	0.75
1c	SO ₂ NH ₂	Н	Н	$+0.58 (p-SO_2NH_2)$	35	4.73	0.67
1d	COOEt	Н	Н	+0.45 (p-COOEt)	25	3.38	0.53
1e	C1	Н	H	+0.23 (p-Cl)	13	1.76	0.25
1f	F	Н	Н	+0.06 (p-F)	9	1.22	0.09
1g	H	Н	H	0 (p-H)	7	0.95	-0.02
1ĥ	Et	Н	Н	-0.15 (p-Et)	5	0.68	-0.17
2a	NO_2	COOMe	Н	$+0.78 (p-NO_2)$	94		
2b	NO_2^2	COOMe	Me	$+0.78 (p-NO_2)$	96		
2c	ΗŽ	COOMe	Me	0 (p-H)	52		
2d	Me	COOMe	Н	-0.17 (p-Me)	55		
2e	Me	COOMe	Me	-0.17 (p-Me)	51		

[[]a] The values shown herein were selected from several literature references [7-12].

hydrazone CH, diazenyl CH and C₅-H proton signals (compounds **1a-h**) and the C₅-H, ester methyl and N₁-methyl proton signals (compounds **2a-e**) in a series of mixed media could be easily assigned by analogy with those in dimethyl sulfoxide media, although the chemical shifts of the respective proton signals were slightly changed in a series of mixed media. Accordingly, the tautomer ratios of **A** to **B** in compounds **1a-h** and **2a-e** were

calculated from the integral ratios of the signals due to the hydrazone CH, diazenyl CH, C_5 -H, ester methyl, N_1 -methyl or other CH proton signals (Tables 1 and 2).

Figures 1-13 exhibiting the change in the tautomer ratios of **A** to **B** were constructed from the data in Tables 1 and 2. In all compounds, the ratios of tautomer **B** were found to increase with elevation of the acid concentration in a series of mixed media, and tautomer **B** existed exclu-

Scheme 3

$$R^2$$
 R^2
 R^3
 R^3
 R^3
 R^4
 R^4

Behavior of Compounds 1 and 2 in the Dimethyl Sulfoxide or Acidic Media

sively in trifluoroacetic acid media. Since the increase of the acid concentration augmented the ratio of tautomer **B**, the mechanism of the transformation from tautomer **A** to tautomer **B** in a series of mixed media was postulated as shown in Scheme 3. Namely, the protonation of tautomer **A** or **B** would give the tautomer **AH**⁺ or **BH**⁺ [4,5], respectively, and the increment of the acid concentration would stabilize the tautomer **BH**⁺ [4a,4b] rather than its resonance isomer **AH**⁺ [4c].

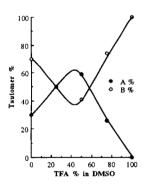


Figure 1. Plots of Tautomer Ratios A/B for Compound 1a.

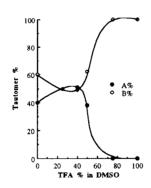


Figure 2. Plots of Tautomer Ratios A/B for Compound 1b.

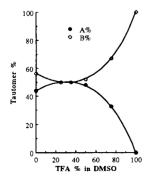


Figure 3. Plots of Tautomer Ratios A/B for Compound 1c.

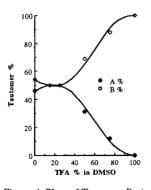


Figure 4. Plots of Tautomer Ratios A/B for Compound 1d.

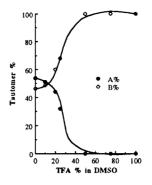


Figure 5. Plots of Tautomer Ratios A/B for Compound 1e.

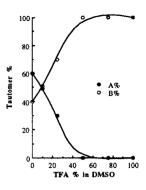


Figure 6. Plots of Tautomer Ratios A/B for Compound 1f.

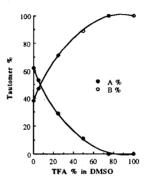


Figure 7. Plots of Tautomer Ratios A/B for Compound 1g.

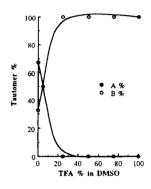


Figure 8. Plots of Tautomer Ratios A/B for Compound 1h.

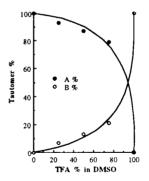


Figure 9. Plots of Tautomer Ratios A/B for Compound 2a.

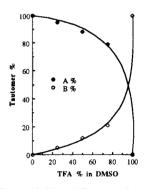
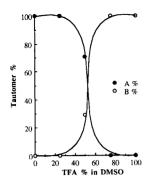



Figure 10. Plots of Tautomer Ratios A/B for Compound 2b.

Figures 1-13 provided the intersections, which corresponded to the acid concentration (C v/v%) giving the 1:1 tautomer ratio [C(A:B = 1:1)] (Table 3) [6]. The values of the acid concentration C(A:B = 1:1) gradually increased with the stepwise elevation of the Hammett σ_p values, suggesting the correlation of the Hammett σ_p values with the acid concentrations in a series of acidic media. The values of the acid concentrations C'(A:B = 1:1) (mol/l) and log C'(A:B = 1:1) were derived from the acid concentrations C(A:B = 1:1) in order to inspect the above correlation. Consequently, the linear correlation of the

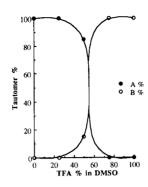
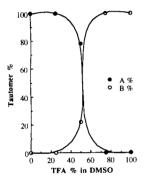



Figure 11. Plots of Tautomer Ratios A/B for Compound 2c.

Figure 12. Plots of Tautomer Ratios A/B for Compound 2d.

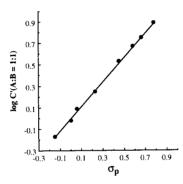


Figure 13. Plots of Tautomer Ratios A/B for Compound 2e.

Figure 14. Correlation of the Hammett σ_p Values with the log C'(A:B = 1:1) Values in Compounds 1a-h.

Hammett σ_p values with the log C'(A:B = 1:1) values was found in compounds **1a-h** (Figure 14) (correlation coefficient r=0.999). Figure 14 indicated that the higher acid concentration was required for the stabilization of the tautomer **B** having the electron-withdrawing *p*-substituents R^1 , which weakened the basicity of the azo nitrogen atom. In addition, the ester group R^2 of compounds **2a-e** was found to decrease the electron density of the azo nitrogen atom from the results that the acid concentration C(A:B=1:1) of compound **2c** ($R^1=H$, $R^2=COOMe$, $\sigma_p=0$) was

52% whose value was larger than that of compound 1b ($R^1 = CN$, $R^2 = H$, $\sigma_p = 0.66$) [C(A:B = 1:1) = 42%].

EXPERIMENTAL

All nmr spectra were measured at 25° with a VXR-300 spectrometer at 300 MHz. The following solvents were employed for the measurement of the nmr spectra: 0 v/v% TFA in DMSO-deuteriodimethyl sulfoxide; 5-75 v/v% TFA in DMSO-trifluoroacetic acid and deuteriodimethyl sulfoxide; 100 v/v% TFA in DMSO-deuteriotrifluoroacetic acid.

REFERENCES AND NOTES

- [1] Y. Kurasawa, T. Hosaka, K. Ikeda, Y. Matsumoto, A. Ishikura, A. Takada, H. S. Kim and Y. Okamoto, *J. Heterocyclic Chem.*, 31, 527 (1994).
- [2] Y. Kurasawa, T. Hosaka, A. Takada, H. S. Kim and Y. Okamoto, J. Heterocyclic Chem., 31, 1661 (1994).
- [3] Y. Kurasawa, A. Ishikura, K. Ikeda, T. Hosaka, Y. Matsumoto, A. Takada, H. S. Kim and Y. Okamoto, *J. Heterocyclic Chem.*, **31**, 233 (1994).
- [4] The Chemistry of the Hydrazo, Azo and Azoxy Groups, Part 1 and Part 2, S. Patai, ed, John Wiley and Sons, London, New York, Sydney, Toronto, 1975; [a] A. F. Hegarty, Part 2, pp 686-698 and references cited therein; [b] R. A. Cox and E. Buncel, Part 2, pp 844-848 and references cited therein; [c] P. J. Krueger, Part 1, pp 166-173 and references cited therein.
- [5] P. W. Robertson, T. R. Hitchings and G. M. Will, *J. Chem. Soc.*, 808 (1950).
- [6] When there were two intersections (Figures 1-4), the larger values C(A:B=1:1) were adopted in order to obtain the common C(A:B=1:1) values where tautomer **B** increased toward 100%.
- [7] Physical Organic Chemistry, Reaction Rates, Equilibria and Mechanism, 2nd Ed, L. P. Hammett, ed, McGraw-Hill Book Company, New York, St. Louis, San Francisco, Duesseldorf, London, Mexico, Panama, Sydney, Toronto, 1970, pp 355-357.
- [8] O. Exner, Correlation Analysis in Chemistry, N. B. Chapman and J. Shorter, eds, Plenum Press, New York, London, 1978, pp 439-540.
- [9] D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).
- [10] H. Zollinger and C. Wittwer, Helv. Chim. Acta, 39, 347 (1956).
- [11] Correlation Analysis of Organic Reactivity, J. Shorter, ed, Research Studies Press, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1982, pp 27-72.
- [12] Correlation Analysis of Chemical Data, O. Exner, ed, Plenum Press, New York, London, 1988, pp 60-64.